Please use this identifier to cite or link to this item:
Title: An image-analysis system based on support vector machines for automatic grade diagnosis of brain-tumour astrocytomas in clinical routine
Authors: Γκλώτσος, Δημήτριος
Σπυρίδωνος, Παναγιώτα Π.
Κάβουρας, Διονύσης Α.
Ραβαζούλα, Παναγιώτα
Αραπαντώνη-Δαδιώτη, Πετρούλα
Contributors: Νικηφορίδης, Γεώργιος Χ.
Item type: Journal article
Keywords: Brain tumour;Biopsy;Εγκεφαλικός όγκος;Βιοψία
Subjects: Medicine
Issue Date: 11-May-2015
Publisher: Taylor & Francis
Abstract: An image-analysis system based on the concept of Support Vector Machines (SVM) was developed to assist in grade diagnosis of brain tumour astrocytomas in clinical routine. One hundred and forty biopsies of astrocytomas were characterized according to the WHO system as grade II, III and IV. Images from biopsies were digitized, and cell nuclei regions were automatically detected by encoding texture variations in a set of wavelet, autocorrelation and parzen estimated descriptors and using an unsupervised SVM clustering methodology. Based on morphological and textural nuclear features, a decision-tree classification scheme distinguished between different grades of tumours employing an SVM classifier. The system was validated for clinical material collected from two different hospitals. On average, the SVM clustering algorithm correctly identified and accurately delineated 95% of all nuclei. Low-grade tumours were distinguished from high-grade tumours with an accuracy of 90.2% and grade III from grade IV with an accuracy of 88.3% The system was tested in a new clinical data set, and the classification rates were 87.5 and 83.8%, respectively. Segmentation and classification results are very encouraging, considering that the method was developed based on every-day clinical standards. The proposed methodology might be used in parallel with conventional grading to support the regular diagnostic procedure and reduce subjectivity in astrocytomas grading.
Language: English
Citation: Glotsos, D., Spyridonos, P., Cavouras, D., Ravazoula, P., Dadioti, P., et al. (September 2005). An image analysis system based on support vector machines for automatic grade diagnosis of brain tumour astrocytomas in clinical routine. Medical Informatics & The Internet in Medicine. 3093). pp. 179-193. Taylor & Francis: 2005.
Journal: Medical Informatics & The Internet in Medicine
Type of Journal: With a review process (peer review)
Access scheme: Embargo
License: Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες
Appears in Collections:Δημοσιεύσεις

Files in This Item:
There are no files associated with this item.

This item is licensed under a Creative Commons License Creative Commons