Please use this identifier to cite or link to this item:
Title: Numerical investigation of fiber transmission of a chaotic encrypted message using dispersion compensation schemes
Authors: Κανακίδης, Δημήτρης
Μπόγρης, Αντώνιος
Αργύρης, Απόστολος
Συβρίδης, Δημήτριος
Item type: Journal article
Keywords: χαοτική επικοινωνία;κρυπτογραφία;αποκωδικοποίηση;κωδικοποίηση;οπτικά φίλτρα;λέιζερ ημιαγωγών;chaotic communication;Cryptography;decoding;Encoding;optical filters;Semiconductor lasers
Subjects: Τεχνολογία
Computer science
Issue Date: 16-May-2015
Publisher: IEEE
Abstract: A detailed numerical investigation of the transmission properties of all-optical chaotic communication systems is presented for two data-encoding techniques and for various dispersion compensation maps. A semiconductor laser subjected to optical feedback generates the chaotic carrier, and the data is encoded on it by chaotic modulation (CM) or chaotic-shift-keying (CSK) methods. The complete transmission module consists of different types of fiber, inline amplifiers, and Gaussian optical filters. Different dispersion maps based on either Nonzero dispersion-shifted fibers (NZ-DSFs) or combinations of single-mode fibers (SMF) along with dispersion-compensating fibers (DCF) were considered. The system's performance is numerically tested by calculating the Q factor of the eye diagram of the received data for 1 and 2.4 Gb/s. The influence of the optical power launched into fiber and the transmission distance to the quality of the decoded message has been investigated. The CSK scheme appears to have better performance relative to the CM scheme, while dispersion maps utilizing NZ-DSFs are superior to that employing DCF. In all encoding methods and transmission maps, a decrease in the Q factor is observed when the repetition bit rate of the encoding message and the transmission distance increases.
Language: English
Citation: Kanakidis, D., Bogris, A., Argyris, A. and Syvridis, D. (2004) Numerical investigation of fiber transmission of a chaotic encrypted message using dispersion compensation schemes. IEEE Journal of Lightwave Technology. [Online] 22 (10), pp.2256‐2263. Available from: [Accessed 15/05/2015]
Journal: IEEE Journal of Lightwave Technology
Type of Journal: With a review process (peer review)
Sponsor: IEEE Aerospace and Electronic Systems Society
Access scheme: Embargo
License: Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες
Appears in Collections:Δημοσιεύσεις

Files in This Item:
There are no files associated with this item.

This item is licensed under a Creative Commons License Creative Commons