Please use this identifier to cite or link to this item:
Title: Event based offline signature modeling using grid source probabilistic coding
Authors: Μπάρκουλα Κωνσταντίνα
Ζώης, Ηλίας Ν.
Ζέρβας, Ευάγγελος
Οικονόμου, Γεώργιος
Item type: Journal article
Keywords: Χαρακτηριστικά πλέγματος;Signature Verification;Grid Features;Επαλήθευση υπογραφής
Subjects: Electrical engineering
Ηλεκτρολογική μηχανική
Issue Date: 9-Jan-2015
Publisher: Springer-Verlag
Abstract: A new offline handwritten signature modeling is introduced that confluences disciplines from grid feature extraction and information theory. The proposed scheme advances further a previously reported feature extraction technique which exploits pixel transitions along the signature trace over predetermined two pixel paths. In this new work the feature components, partitioned in groups, are considered as events of a grid based discrete space probabilistic source. Based on the 16-ary FCB2 feature, a set of 87 orthogonal event schemes, organized in tetrads, is identified. Next an entropy rule is drawn in order to declare the most appropriate tetrad scheme for representing a writer’s signature. When skilled forgery is encountered verification results derived on both the GPDS300 dataset and a proprietary one, indicate enhanced EER rates compared to other approaches, including the previous reference of FCB2 as well.
Language: English
Citation: Barkoula, K., Zois, E., Zervas, E. and Economou, G. (2013). Event Based Offline Signature Modeling Using Grid Source Probabilistic Coding. New Trends in Image Analysis and Processing – ICIAP 2013. vol. 8158. pp. 77-85. Springer-Verlag.
Journal: New Trends in Image Analysis and Processing – ICIAP 2013
Type of Journal: With a review process (peer review)
Access scheme: Embargo
License: Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες
Appears in Collections:Δημοσιεύσεις

Files in This Item:
File Description SizeFormat 
  Restricted Access
1.26 MBAdobe PDFView/Open Request a copy

This item is licensed under a Creative Commons License Creative Commons