Please use this identifier to cite or link to this item:
Title: A Fourier-based implicit evolution scheme for active surfaces, for object segmentation in volumetric images
Authors: Δελήμπασης, Κωνσταντίνος Κ.
Ασβεστάς, Παντελής Α.
Κεχρινιώτης, Αριστείδης Ι.
Ματσόπουλος, Γεώργιος Κ.
Tassani, Simone
Item type: Conference publication
Conference Item Type: Full Paper
Keywords: Computational complexity;Image segmentation;Υπολογιστική πολυπλοκότητα;Κατάτμηση εικόνας
Subjects: Medicine
Biomedical engineering
Βιοϊατρική τεχνολογία
Issue Date: 8-Feb-2015
Publisher: IEEE
Abstract: In this work we present an approach for implementing the implicit scheme for the numerical solution of the partial differential equation of the evolution of an active contour / surface. The proposed approach is formulated as a deconvolution of the current contour/surface points with a one-dimensional mask that is performed using the Discrete Fourier Transform (DFT). The proposed scheme possesses the separability property along different dimensions and allows us to apply it to deformable surfaces and implement implicit evolution, without the need to store and invert large sparse matrices. Initial results from the application of the proposed scheme to synthetic and clinical volumetric data, demonstrate the correctness and applicability of the method. The computational complexity of the proposed scheme is also derived.
Description: Proceedings
Language: English
Citation: Delibasis, K., Tassani, S., Asvestas, P., Kechriniotis, A. and Matsopoulos, G. (2012). A Fourier-based implicit evolution scheme for active surfaces, for object segmentation in volumetric images. In the International Conference on Imaging Systems and Techniques. Manchester, 16th-17 July 2012. IEEE.
Conference: International Conference on Imaging Systems and Techniques
Access scheme: Embargo
License: Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες
Appears in Collections:Δημοσιεύσεις

Files in This Item:
File Description SizeFormat 
  Restricted Access
2.1 MBAdobe PDFView/Open Request a copy

This item is licensed under a Creative Commons License Creative Commons