Please use this identifier to cite or link to this item: http://hdl.handle.net/11400/6145
Title: A numerical scheme for a shallow water equation in constant-depth environment
Authors: Φαμέλης, Ιωάννης Θ.
Προσπαθόπουλος, Αριστείδης Μ.
Σαραντόπουλος, Σ.
Μπράτσος, Αθανάσιος Γ.
Item type: Conference publication
Conference Item Type: Full Paper
Keywords: Boussinesq equations;Numerical modeling;Εξισώσεις Boussinesq;Αριθμητική μοντελοποίηση
Subjects: Electronics
Applied mathematics
Ηλεκτρονική
Εφαρμοσμένα μαθηματικά
Issue Date: 13-Feb-2015
2006
Publisher: [χ.ό.]
Abstract: This paper presents a parametric finite-difference scheme concerning the numerical solution of the one-dimensional Boussinesq-type set of equations, as they were introduced by Peregrine[16], in the case of waves relatively long with small amplitudes in water of constant depth. The method which is used can be considered as a generalization of the Crank-Nickolson method and it has been applied successfully to a problem used by Beji and Battjes.
Language: English
Citation: Famelis, I., Prospathopoulos, A., Sarantopoulos, S. and Bratsos, A. (2006). International Conference “From Scientific Computing to Computational Engineering”. In the 2nd International Conference “From Scientific Computing to Computational Engineering”. Athens, 5th-8th July 2005.
Conference: International Conference “From Scientific Computing to Computational Engineering”
Access scheme: Embargo
License: Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες
URI: http://hdl.handle.net/11400/6145
Appears in Collections:Δημοσιεύσεις

Files in This Item:
File Description SizeFormat 
cb7.pdf
  Restricted Access
145.86 kBAdobe PDFView/Open Request a copy


This item is licensed under a Creative Commons License Creative Commons