Please use this identifier to cite or link to this item:
Title: Natural convection in a 2D enclosure with sinusoidal upper wall temperature
Authors: Σαρρής, Ιωάννης Ε.
Λεκάκης, Ιωάννης
Βλάχος, Νικόλας Σ.
Item type: Journal article
Keywords: Fluid circulation intensity;Nusselt number;Rayleigh number;Nusselt αριθμός;Rayleigh αριθμός;Ένταση κυκλοφορίας του υγρού
Subjects: Technology
Issue Date: 4-May-2015
Date of availability: 4-May-2015
Publisher: Taylor & Francis
Abstract: Natural convection in a two-dimensional, rectangular enclosure with sinusoidal temperature profile on the upper wall and adiabatic conditions on the bottom and sidewalls is numerically investigated. The applied sinusoidal temperature is symmetric with respect to the midplane of the enclosure. Numerical calculations are produced for Rayleigh numbers in the range 10 2 to 10 8 , and results are presented in the form of streamlines, isotherm contours, and distributions of local Nusselt number. The circulation patterns are shown to increase in intensity, and their centers to move toward the upper wall corners with increasing Rayleigh number. As a result, the thermal boundary layer is confined near the upper wall regions. The values of the maximum and the minimum local Nusselt number at the upper wall are shown to increase with increasing Rayleigh number. Finally, an increase in the enclosure aspect ratio produces an analogous increase of the fluid circulation intensity.
Language: English
Citation: SARRIS, I.E., LEKAKIS, I. & VLACHOS, N.S. (2002). Natural convection in a 2D enclosure with sinusoidal upper wall temperature. Numerical Heat Transfer: part A - Applications. [Online] 42 (5). p.513-530. Available from:[Accessed 30/11/2010]
Journal: Numerical Heat Transfer, Part A
Type of Journal: With a review process (peer review)
Access scheme: Publicly accessible
License: Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες
Appears in Collections:Δημοσιεύσεις

Files in This Item:
File Description SizeFormat 
10407780290059675.pdf471.64 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons